If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-42x-125=0
a = 2; b = -42; c = -125;
Δ = b2-4ac
Δ = -422-4·2·(-125)
Δ = 2764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2764}=\sqrt{4*691}=\sqrt{4}*\sqrt{691}=2\sqrt{691}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{691}}{2*2}=\frac{42-2\sqrt{691}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{691}}{2*2}=\frac{42+2\sqrt{691}}{4} $
| 5x-9=8-27 | | 20-11r+20=-20-15r | | 8x+2-6x-2=10 | | 3n+20=5n-18 | | -9x-1-6x-2=10 | | 3x-4=-5x-16 | | 35+70+4x+2=180 | | 2x+8+6x-3=3x | | 10y+10=-7-6y | | -17.6k=6.66-17k | | 3x-3+4=2-x+3 | | 10+11c=-16+14c-13 | | 3x+3=-x+5 | | 3x+1+7x-4+90=180 | | 3x-10=152 | | 3x+1=-x+5 | | 3z-1=-7` | | -7k-16=-9k+20 | | 3x+1=-x-1 | | 3x-3+4=2-x-3 | | 16.59-17.6f=-13.2f+14.83 | | 3x-1+4=2-x+3 | | 12=-4(-6x-12) | | 7u+5=8u | | -9m+17=-13m-19 | | 12=e-(-18) | | x3+2x-3=0 | | 4x+3=51x= | | 3(n–5)+4=19 | | 8y−7=3y+13 | | x^2-0.5x=0.5 | | 4(-8x+12)=-26–32x |